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Abstract
The survival probability of a quantum state encodes essential information
concerning the decay rate of quantum particles and is the primary object
for investigating the time–energy uncertainty relations and the occurrence of
the quantum Zeno effect. The purpose of this article is to uncover some
curious properties concerning the relations between the values of the survival
probability of a quantum state at different times. These relations put surprising
restrictions on the evolution pictures of quantum states, and also illustrate their
peculiar intricacies.

PACS numbers: 02.30.Nw, 03.65.Ta

The ways to manipulate the quantum states and to exploit the available energy resources to
achieve the highest or desired decay rate (evolution speed) are closely related to deriving
physical limits relevant to the quantum evolutions and to the theoretical issues in the newly
emerging field of quantum computation and quantum information [6]. The purpose of this
paper is to uncover some intrinsic and peculiar constraints on the evolution pictures of any
quantum system specified by an initial state and a time-independent energy observable. These
restrictions have their origin in the Fourier transform perspective of the notion of survival
probability.

Consider the evolution of an arbitrary initial quantum state |ψ〉 (represented by a
normalized wave function) driven by a time-independent energy observable (Hamiltonian)
H, the evolving state |ψt 〉 is determined by the Schrödinger equation

ih̄
∂

∂t
|ψt 〉 = H |ψt 〉, |ψ0〉 = |ψ〉,

where h̄ is the Planck constant divided by 2π . Formally, the solution is given by
|ψt 〉 = e−itH/h̄|ψ〉, and the survival probability at time t is defined as [7]

Pt = |〈ψ |ψt 〉|2 = |〈ψ |e−itH/h̄|ψ〉|2, t ∈ R.
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Alternatively, the survival probability is the transition probability between the initial state
|ψ0〉 = |ψ〉 and the final state |ψt 〉.

The survival probability is a basic quantity in the study of the temporal behaviour of
quantum mechanical systems. Mathematically, the survival probability of a quantum state can
be expressed as the absolute square of the survival amplitude, which in turn can be expressed
as the Fourier transform of the probability density induced by the wavefunction according to
the Born rule in the energy representation. More explicitly, let {|E〉} be the complete set of
the energy eigenstates:

H |E〉 = E|E〉, 〈E′|E〉 = δ(E′ − E).

Let |ψ〉 be expanded in the energy eigenstates as

|ψ〉 =
∫

λ(E)|E〉dE,

where the integration (and also all subsequent integrations) is over the spectrum of H. When
the energy spectrum is discrete, all integrals should be interpreted as discrete sums. Then

e−itH/h̄|ψ〉 =
∫

e−itE/h̄λ(E)|E〉dE,

and according to the Parseval theorem,

〈ψ |e−itH/h̄|ψ〉 =
∫

e−itE/h̄|λ(E)|2dE.

Consequently, the survival amplitude (whose absolute square equals the survival probability)
is precisely the Fourier transform of the state probability density |λ(E)|2 in the energy
representation. This intrinsic Fourier transform characteristics yield important implications
for physical phenomena such as the time–energy uncertainty relations and the quantum Zeno
effects [2–5, 8].

Now we proceed to present our main result. Specifically, we address the following
problem:

Suppose that at a certain time t = T , we know the survival probability PT = β, then what
can we say about Pt at some other time, say t = 2T ?

At first glance, one might claim that P2T can be quite arbitrary, as long as we vary the
quantum system (the initial quantum state and the energy observable) and keep PT = β.
Surprisingly, the following result establishes a rather stringent constraint for the possible
values of P2T .

Theorem. Let T > 0 be a fixed instant of time, and suppose that PT = β (of course
0 � β � 1). Then

√
P2T � 2β − 1.

Before giving the proof, let us elaborate a little on the singular intricacy of this result.
From the theorem, we see that if PT > 1

2 , then P2T cannot be zero, no matter what the initial
state and the energy observable are. Put it alternatively, if P2T = 0, then it is necessary that
PT � 1

2 . The unique and subtle feature here is that we can find quantum systems such that
P2T = 0, and times t1 and t2 arbitrarily close to T such that t1 < T < t2 and Pt1 = Pt2 = 1
(see the following example). Nevertheless, we always have PT � 1

2 . Of course, when β � 1
2 ,

the conclusion of the theorem is trivial. The meaningful part is the case β > 1
2 .

We may also formulate our motivating problem as follows: Suppose we know that
P2T = 0 for some fixed T > 0, then can we make any reasonable statement about Pt for
0 < t < 2T ? From the above theorem, we know that PT � 1

2 , and moreover by iteration,
PT/2n � cos2(π/2n+2) for n = 0, 1, 2, . . . . As for other t, the situations are radically different!
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The factor T
2T

= 1
2 is really distinguished. It seems very hard to gain a physical intuition into

this result which is of a number-theoretic flavour.
Let us consider an example, which shows that the inequality in the theorem is sharp, and

also exhibits its peculiar features. Consider a two-level system with two energy eigenstates
|E0〉 and |E1〉. For any non-negative integer k = 0, 1, 2, . . . , and any T > 0, let the energy
observable be

H = (2k + 1)πh̄

4T
(|E0〉〈E0| − |E1〉〈E1|)

and the initial state be

|ψ〉 = 1√
2
(|E0〉 + |E1〉).

Then

Pt = cos2

(
(2k + 1)π

4T
t

)
.

Therefore, P2T = 0 and PT = 1
2 , and the inequality

√
P2T � 2PT − 1 is saturated as an

equality. This shows the optimality of our result. On the other hand, we have Pt = 1 when

t = 2j

2k + 1
2T , j = 0, 1, . . . , k.

Thus for fixed T, if we increase k, the points of t such that Pt = 1 become denser in the interval
[0, 2T ], but PT remains bounded by 1

2 . Actually, here PT = 1
2 .

The mathematical content of the above theorem is known to probabilists (see [1], p 527).
However, it is only stated as a problem there without proof, and it seems that the physical
implications of this inequality are not illuminated in the quantum decaying context. We now
present a proof of the theorem for completeness. Let Re and Im denote the real and imaginary
parts of a complex number, respectively. For any real number γ ∈ R, we have

(Re(eitγ /h̄〈ψ |e−itH/h̄|ψ〉))2 =
(

Re
∫

eit (γ−E)/h̄|λ(E)|2dE

)2

=
(∫

cos(t (γ − E)/h̄)|λ(E)|2dE

)2

�
∫

cos2(t (γ − E)/h̄)|λ(E)|2dE

=
∫

1

2
(1 + cos(2t (γ − E)/h̄))|λ(E)|2dE

= 1

2
(1 + Re(ei2tγ /h̄〈ψ |e−i2tH/h̄|ψ〉))

� 1

2
(1 +

√
P2t ).

Therefore, we have

max
γ

(Re(eiγ t 〈ψ |e−itH/h̄|ψ〉))2 � 1

2
(1 +

√
P2t ).

On the other hand,

(Re(eitγ /h̄〈ψ |e−itH/h̄|ψ〉))2

= (cos(tγ /h̄) · Re〈ψ |e−itH/h̄|ψ〉 − sin(tγ /h̄) · Im〈ψ |e−itH/h̄|ψ〉)2

� (Re〈ψ |e−itH/h̄|ψ〉)2 + (Im〈ψ |e−itH/h̄|ψ〉)2

= Pt ,
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and for any t, the above inequality can become an equality by choosing suitable γ , that is,

max
γ

(Re(eiγ t 〈ψ |e−itH/h̄|ψ〉))2 = Pt .

Consequently, we have

Pt � 1
2 (1 +

√
P2t )

and the conclusion of the theorem follows.
Finally, let us formulate an extremal problem for the survival probability. For some fixed

T > 0 and any time t > 0, let Mt = sup Pt , the supremum is taken over all quantum systems
(here a quantum system refers to a pair of an initial quantum state and a time-independent
energy observable) whose survival probability at time t = 2T is zero, that is, over all survival
probabilities Pt such that P2T = 0. From the above discussion, we know that for t = T

2n ,

Mt = cos2
( π

2n+2

)
, n = 0, 1, . . .

and Mt = 1 for any

t ∈
{

2j

2k + 1
2T : k = 1, 2, . . . ; j = 0, 1, 2, . . . , k

}
.

Note the latter set is dense in [0, 2T ].
More generally, for any positive, relatively prime integers m and n satisfying 2 � m < n,

put d = n
m

π
T
h̄, and consider an m-level system with the energy observable

H = d

m∑
j=1

j |Ej 〉〈Ej |

and the initial state

|ψ〉 = 1√
m

m∑
j=1

|Ej 〉.

Here {|Ej 〉} constitutes an orthonormal base for the system. Then the survival probability of
|ψ〉 is

Pt =
∣∣∣∣∣∣

1

m

m∑
j=1

e−itjd/h̄

∣∣∣∣∣∣
2

,

which simplifies to Pt = 1
m2

∣∣ωm
t −1

ωt−1

∣∣2
if ωt = e−itd/h̄ = e−i2π n

m
t

2T �= 1, and to Pt = 1 if ωt = 1.
Clearly, P2T = 0 and Pt = 1 when t is an integer multiple of m

n
2T . Also, we have PT = 0 if

n is even, and PT = 2
(
m2

(
1 − cos

(
n
m

π
)))−1

if n is odd.
Therefore, we conclude that for any t which is a rational multiple of 2T in (0, 2T ), not

of the form t = 1
n

2T , we have Mt = 1. We conjecture that Mt = 1 for any t which is an
irrational multiple of 2T in (0, 2T ), and Mt = cos2

(
π
2n

)
when t = 1

n
2T for some integer n.
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